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The extended channel model derived and analysed in two previous articles is further 
developed by investigating free oscillations and forced motion in natural enclosed 
basins. Firstly, a zeroth-order model is analysed. In  this model, field variables are 
expressed as a product of a single known cross-sectional shape function and an 
unknown function of time and the co-ordinate along the lake axis. Conditions are 
discussed under which this zeroth-order model is meaningful, and it is shown that 
under normal circumstances Coriolis effects must be ignored. Subsequently the 
general Nth-order channel model is applied to the Lake of Lugano. It is shown that 
eigedrequencies and amphidromic systems are well predicted in such channel-like 
lakes. The paper ends with a discussion on the selection of shape functions and with 
further applications and limitations of the channel model. 

1. Introductory remarks 
This paper continues an analysis of the gravitational oscillations of homogeneous 

water bodies in basins on the rotating Earth (see Raggio & Hutter 1982a for general 
theory, 19828 for first applications, referred to henceforth as I and I1 respectively). 
Here, this analysis is continued by presenting the results of a numerical study of 
gravitational oscillations. Such analyses are usually performed by recourse to finite- 
difference (Rao 1966, 1973,1977; Rao & Schwab 1976; Schwab 1978) or finite-element 
(Hamblin 1972, 1976) formulations. We proposed instead a procedure by which the 
spatially two-dimensional (or in more general situations, the three-dimensional) 
boundary-value problem was transformed to a hierarchy of boundary-value problems 
in one spatial dimension. The emerging initial boundary-value problem is then solved 
by whichever method is suitable for partial differential equations in one space and one 
time variable. In  the subsequent treatment we study some numerical properties of 
these channel equations. 

The transformation of the boundary-value problem to a hierarchy of different 
boundary-value problems in a lower-dimensional space is given in I. In the literature 
such spatially reduced models are not in general regarded as numerical procedures 
approximating a physical problem of higher dimension. Here this viewpoint is adopted, 
and it will be demonstrated that the channel equations constitute a reasonable model 
for the description of free oscillations in natural curved elongated lakes, and that a 
first-order model generally suffices for a reasonable prediction of the motion. Emphasis 
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will be on the physical appropriateness rather than the numerical properties of the 
governing equations. These will be investigated more thoroughly in another article 
(see Raggio 1982). As test basin for our presentation the Lake of Lugano will serve. 

This article is the continuation of two previous papers. Equations of these latter 
articles used herein will be listed with prefix I or 11: hence (112.26) is equation (2.26) 
of 11, etc. 

2. Model equations - remarks on a zeroth-order model 

linear convective terms assume the form 
Governing equations are (I4.6), (I4.8), (14.9) and (14.11), which on ignoring non- 

- aE a Z(1)- + - (C(Ok,) - q;v ,  - C$AVZ = 0, 
at as 

( 2 . 1 4  

(2.lb) 

(2 .14  

H ~ o ' ~ , + H g ) ~ , - H @ ) ~ z  = 0. (2.1d) 

Here v,, v,, v, are unknown vector quantities representative of the velocity com- 
ponents in the longitudinal, transverse and vertical directions of the curvilinear 
co-ordinate system (s, n, z) ,  and 6 characterizes the surface elevation. The coefficient 
matrices are known functions of position 8 and are defined in appendix A of I, and 
vector quantities carrying an asterisk are those due to atmospheric pressure and wind 
forces, also defined in appendix A of I. The physical fields v, etc. are related to the 
above vector quantities v, etc. by the shape-function expansions v, = + . v, etc. and 
the dimension of + or v, defines the order of the model. In  a zeroth-order model all 
quantities reduce to scalars. The emerging model is still complicated in this case, but 
it seems justifiable to ignore the transverse momentum equation and the bottom 
boundary condition (2.1 d), and in the surface continuity equation (2.1 c) to omit the 
third and fourth terms in comparison with the first two terms. The two remaining 
equations are then the longitudinal momentum equation and the continuity equation 
involving v,, 5 and v,, but the last variable only enters together with the Coriolis 
parameter and must be ignored. The resulting equations are then (we now drop bold- 
faced notation) 

in which 

( 2 . 2 4  

(2.2b) 

( 2 . 3 ~ )  

relate the variable [* with the atmospheric pressure gradient and define the coefficients 
in terms of cross-sectional integrals. In these J = 1 - Kn, where K is the curvature of 
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the channel axis, Q is the cross-section, and B+ and B- are the two shorelines. The 
Coefficients (2.3) depend on the choice of the shape function. This flexibility enhances 
the applicability of (2.1). For instance, in a rectangular channel one may choose 
trigonometric functions for q5 and then deduce the exact solution to the corresponding 
eigenmode. The coefficients (2.3b,c) are also weighted with the curvature, which 
eliminates the element of subjectivity when selecting the channel axis, as different 
choices of channel axes will automatically be accounted for by appropriate changes in 
the coefficients (2.3). 

deleted) : 

where 

B =  

3. Free oscillations in natural basins 
Sufficient proof for the channel model has been given in I and I1 to regard it as a 

reasonable description of gravitational modes in narrow elongated lakes. Its governing 
equations are (2.1 ad), which in that form hold for arbitrary shape-function expan- 
sions. They represent the longitudinal and transverse momentum equations, the 
continuity equation, and the kinematic boundary condition at the bottom. When 
complemented by initial conditions and appropriate boundary conditions at the 
channel ends, they will allow determination of surface elevation and velocity distri- 
butions either resulting from external forces or as free oscillations. For an Nth-order 
model (2.1) is a partial differential equation involving the 4N unknowns v,, vn, v,, 5;  
the remaining quantities carrying an asterisk being prescribed external forces (see 
(112.6)). For large N computational expenditures may be large, but this disadvantage 
of the channel model is partly compensated, as a steady-state process and a periodic 
response (upon a Fourier transformation) will transform the partial differential 
equations in the variables s and t into a two-point boundary-value problem for an 
ordinary differential equation, which can be solved by whichever ordinary differential 
equation integrator is available. Thus writing all variables v,, . . . , g, p$(O), . . . , w:(1) as 
f = fo exp (iot) with complex-valued amplitude vector, the following complex-valued 
set of equations for the amplitudes is obtained (the subscript info is henceforth 

( 3 . 1 ~ )  a s  

E.y+A.x = I,, (3.1 b) 

dY D.- + B.y+C.x = I,, 

x = (vn, VAT, Y = (v,, UT, (3.2) 

*(I), p:W, O)T, 
1 

Po Po 
I, = - (w$(l), p p ,  O)T, I, = -(w n (3.3) 

are complex-valued vectors and matrices. Equations (3.1 a, b) consist of two sub- 
systems, a first-order differential equation for the vector quantity y = (y,, 5 )  and an 
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algebraic system. The matrices A, ..., E are expressible in terms of the coeficient 
matrices of the original system (2.1) and the vectors on the right-hand sides of (3.1 a ,  b) 
are known for prescribed harmonically exciting external forces. Clearly, for an Nth- 
order model the vectors x and y have 2N complex-valued components, and so A, . . . , E 
have the dimension 2N x 2N.  

The physically relevant boundary condition is no flux through the channel ends, 
expressible in terms of the variable y as 

(I,O)y = Hy = 0 at s = O,L, ( 3 . 5 4  

in which I is the unit square matrix and s = 0, L mark the channel ends. The two-point 
boundary-value problem for the ordinary differential equation is given by (3.1) and 
(3.5u),  whose numerical solution will now be described. 

The preceding equations hold for arbitrary shape functions, but for barotropic 
motion it suffices to assume = + ( n ) .  Hence, ,C, = 0. The kinematic boundary 
condition at the bottom, ( 2 . 1 4 ,  is then separated from the remaining equations, and 
transforms into a prediction equation for the vertical velocity components, once the 
horizontal components are known. Setting the v, determination aside (3.1 b) becomes 

(3 .5b)  

and the last term on the left-hand side of ( 3 . 1 ~ )  reduces to C1v,. Since, moreover, 
A and D are non-singular for non-vanishing cross-sections, the boundary-value 
problem (3.1)-(3.4) may be written in standard form as 

( 3 . 6 ~ )  Y ' ( 4  = F(S, 4 Y ( 4  + g(S, 4, 
(3.6b) 

where F(s, W) = - D(s)-l[ B(s, W) - C,(a) (Ai(8, w))-' E(s)l,\ 
g(8, W) = D(s)-' [ls- C(S) A,(s, ~)-'1,]. 

(3.7) 

Actually, since (3.6) is complex-valued, and because the matrices A, . . . , E have only 
a limited number of elements with real and imaginary parts, it is computationally 
advantageous not to work with (3 .6) ,  but with its associated system in which real and 
imaginary parts are separate. This was done when performing actual calculations, but 
will not be shown here because one simply obtains another system of the form (3.6) 
with 4N real variables instead of 2N complex-valued unknowns. It should also be 
noticed that (3.6) is written as an inhomogeneous problem. It was solved primarily 
with the aim of resolving the free-surface oscillation problem. For this, g = 0; the 
problem then consists of solving for the eigenvalues and associated eigenfunctions. 
From a practical point of view only the lowest eigenvalues and eigenfunctions are of 
interest, since they are the most likely to be excited; we shall focus attention on these 
below. 

3.1. Integration procedure 

There are several methods, all having their particular advantages, for solving the 
eigenvalue problem associated with (3 .6)  (see Gary & Helgason 1970). The shooting 
method may be applied to the linear boundary-value problem (3 .6)  by superposition of 
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independent solutions which satisfy the boundary conditions Hy(0) = 0 at s = 0. In  
this case the solution may be expressed as 

N 

a = l  
Y ( 4  = .x U i ( 4  c, + w(4, (3.8) 

where the vectors u4(s) of dimension 2N are linearly independent solutions of the 
homogeneous system (3 .6)  : 

The solutions are computed by integrating ( 3 . 6 ~ )  as an initial-value problem subject 
to the homogeneous initial conditions (3 .6b)  at s = 0. The vector w is a particular 
solution of ( 3 . 6 ~ )  also subject to the boundary condition at s = 0. The c, are constants 
of superposition, and may be determined from the second boundary condition 

Hy(L) = H(U(L)c+w(L)) = HU(L)c+Hw(L)  = 0, (3.10) 

where U is the matrix with column vectors ui, and c is the vector of the free constants 
ci. If the matrix HU (L) is non-singular, the unknown vector c may be determined from 
(3.10) and the solution may be computed from (3 .8) .  

Formally, for the case of free oscillations the inhomogeneous solution is w = 0; 
(3.10) hm only non-trivial solutions provided that HU is singular. For a lake with 
length L this will yield a discrete frequency spectrum and associated eigenfunctions. 
The latter are obtained by calculating c (up to a free amplitude) and resubstituting i t  
into (3 .8) .  

The above procedure to determine the complementary functions ui (i = 1 ,  . . . , N) 
and to evaluate the eigenfrequency from a singularity condition of the system 
HU(L,  w )  c = 0 would work perfectly, were it not for the numerical properties of the 
matrix F (in (3 .6 ) ) .  Numerical calculations for realistic values of w show that the 
spectral width of the matrix F is generally large, and furthermore increases with 
increasing number of shape functions. As a result complementary functions lie far 
apart; although they are theoretically linearly independent they are numerically 
(nearly) linearly dependent, making the system (3.10) computationally ill-conditioned. 

This situation is nevertheless well known to numerical analysts. A way of over- 
coming the difficulties is to divide the interval [O,L] into subintervals that are 
sufficiently small so that the complementary solutions within each subinterval cannot 
lie too far apart at the end of the subinterval; at the end of each subinterval the 
complementary vector c is transformed by a Gram-Schmidt orthonormalization 
procedure, and integration is continued with this new orthonormalized initial vector. 
This process is continued until the other end s = L is reached, where the second 
boundary condition is satisfied. 

The integration procedure described above is known in numerical analysis as the 
initial-value a p p r m h  coupled with orthonormalization, and excellent software 
packages exist, with the aid of which the integration can be implemented (see e.g. 
Scott & Watts 1975; Watts, Scott & Lord 1979); for a detailed description of the 
numerical treatment of the channel equations, see Raggio (1981).  In our analysis the 
SUPORT package of Scott et al .  was used, and results discussed below pertain to its use 
in our lake model. 

U; = F(s, W )  ~ ~ ( 8 ) .  (3.9) 
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FIGURE 1. (a) Top view of the channel-model discretization : cross-sections and axis. (b )  Perspective 
view of the channel-model discretization : cross-sections and thalweg. 

3.2. The seiches of the Eastern basin of Lake of Lugano 

The Eastern basin of the Lake of Lugano is a very narrow, extremely deep, L-shaped 
channel with a length of about 17 kilometers. The mean lake width is 1.5 km, with a 
minimum width of 1 km and a maximum width of 3 km. The Lake has steep shores, and 
the mean depth is 175 m, with a maximum depth of 287 m. The ends of this channel- 
like lake are shallow compared with the remainder of the basin. Figure 1 (a) shows a top 
view of the Lake, including the selected axis and cross-sections. In  figure 1 (b) a per- 
spective view of the channel-model discretization is shown. Cross-sections and thalweg 
are plotted. 

Numerical results should depend on the choice of shape function, but careful study 
(Raggio 1981,1982) has indicated that for polynomial shape functions surface elevation 
plots do not depend appreciably on this selection. The following results are based on 
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Finite-element model Channel model - - 
Frequency Period Frequency Period 

Mode ( x lo-' Hz) ( x 10-1 Hz) 
1 0-075 13-8 0.076 13.7 
2 0.158 6-6 0*161 6-5 
3 0.206 5- 1 0.210 5.0 
4 0.278 3-8 0.280 3.7 

TABLE 1.  Eigenfrequencies of the four lowest gravitational surface seiches for the eastern baain 
of the Lake of Lugano as obtained with Hamblin's tinite-element model and the channel model 
with 4 Cauchy terms as shape functions 

a four-term Cauchy-series expansion = { 1 , n, n2, n3}, but later on suitably selected 
orthogonal polynomials will be used. These are chosen so as to make 0) diagonal. 
Results were constructed for the first four modes, and these were compared with those 
obtained from a finite-element representation of the tidal equations. This finite- 
element program is due to Hamblin (personal communication). 

The eigenfrequencies of the four lowest-order surface gravitational modes are shown 
in table 1. The two methods yield practically the same eigenfrequencies, as the 
difference in all calculated periods is only about 6 s. This difference is associated mainly 
with the form in which the lake was discretized in the two models. 

A verification of the surface seiches with actual data was possible, as water-level 
measurements around the Lake of Lugano were gauged with instruments from the 
Swiss Hydrological Survey (Bern). The gauges restricted the frequency range in which 
seiches are found to the lowest three modes, and did not allow detection of phase shifts 
by which the rotation of amphidromies could have been verified. Smoothed power 
spectra of surface-elevation gauges positioned at Campione, Lugano and Porlezza, 
however, allowed identification of the frequencies of the first three modes. Time series 
are from an event that took place in the late afternoon of 9 August 1979, when violent 
wind gusts from a Western direction strongly excited the free oscillation modes of the 
lake. 

Figure 2 shows the smoothed power spectra for these stations for the time series of 
the surface elevation gauges between 7.55 p.m. and 3.15 a.m. on 9 and 10 August 1979. 
The first three eigenfrequencies as calculated with the channel model are indicated 
with arrows. The first calculated eigenfrequency is obviously excited at the three 
stations, and for frequencies corresponding to the second and third calculated modes 
corresponding peaks in the power spectra may be identified. The differences between 
the peaks in the data and the predicted frequencies may be attributed to imprecision 
in the recording of these high frequency oscillations, since the errors are not systematic. 
Other relative maxima can also be identified which are not predicted by the model. 
These cannot be attributed to an interaction between the Western and Eastern basin 
of the Lake of Lugano. Such an interaction behaves like a Helmholtz resonator 
(Neumann 1944) which has a frequency far below the first eigenfrequencies of the single 
basins. They cannot be attributed to nonlinear effects, since the amplitudes are very 
small. The only apparent reason is that the atmospheric forcing had these dominmt 
frequencies . 
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FIGURE 2. Power spectra of the surface-elevation oscillation for the stations Campione (a), 
Lugano ( b )  and Porlezza (c). Energy density = 0.38 x 10°rdinate in mB/s. The arrows marked by 1, 
2, and 3 indicate the first three eigenfrequencies of the lake. 

Figures 3 (d) display for the channel model the co-range and co-tidal lines of the 
four lowest eigenmodes of the basin. When 5 = t,, exp (i(wt - p ) )  the former are the lines 
of constant real to and the latter those of constant p. The normalization for both is 
arbitrary; .$ is normalized so as to give the maximum amplitude the value 100 units. 
The equidistance of the co-range lines is equal to 10 units, and the co-tidal lines are 
represented for the values /3 = 0", O e l " ,  179.9', 180°, 180.1" and 359.9'. Co-range and 
co-tidal lines were plotted with a contour-plot program for orthogonal curvilinear 
co-ordinates. Inspection of the co-tidal lines indicates that all amphidromies rotate 
in the counter-clockwise direction. The motion in the lake is consequently of Kelvin 
type. 

The lowest mode has a single ampidromic point roughly a t  the middle of the lake. 
Co-tidal lines are strongly bundled in the cross-channel direction. The longitudinal 
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Porlezza 

Period 13.7 min 

(a  ) 

FIGURE 3(a, b ) .  For caption see p. 292. 
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Porlezza 

Period 3.1 min 

Carnpione 

Period 5.0 min 

(C) 

Porlezza 

FIGURE 3. Channel model: amphidromic systems for the first (a), second (a), third (c) 
and fourth (d) gravitational modes. Cauchy series; 4 shape functions. 
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Period 13.8 min 

(a) 

Period 3.8 min 

FIGURE 4. Finite-element model: amphidromic systems for the 
f h t  (a) and fourth ( b )  gravitational modes. 

structure of the oscillation is manifested by this bundling, and because co-range lines 
all join points of opposite shores. This behaviour persists even in the vicinity of the 
Bay of Lugano (the shallow wide portion of the lake close to Lugano). The preference 
for longitudinal behaviour persists for the second mode, even though an amphidromic 
point is situated near the Bay of Lugano. The third and fourth mode exhibit still mainly 
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Number 
of shape 
functions Frequency Differences Frequency Differences 

Mode 1 x lo-* Hz Mode 2 x 10-1 Hz 

0 
0.0063 
0.0009 

0.287213 
0.287 213 
0.280926 
0.280017 

0.0016 . 
0.0018 
0.0004 

1 0.768063 
2 0.766 446 
3 0-764 672 
4 0.764 257 

Extrapolated 0.762 877 0.277 845’ 

TABLE 2. Eigenfrequencies for the eastern basin of the Lake of Lugano for the i h t  and fourth 
gravitational modes using one, two, three and four Cauchy terms as shape functions and an 
extrapolated value 

longitudinal behaviour, but in the Bay of Lugano surface elevations now show a strong 
gradient transverse to the main channel direction, as there are now co-range lines 
connecting points on the same shoreline. 

A more challenging test of the suitability of the channel model than a frequency 
comparison is obtained by comparing the eigenmode structures with those based on 
Hamblin’s finite-element model. Figures 4 (a,  b )  show the corresponding amphidromic 
systems for mode 1 and mode 4, based on the finite-element representation using 
triangular elements with quadratic shape functions. Bearing in mind that contour 
plots for the channel model were produced with a contour-plot program while those 
for the finite-element calculations were drawn by hand, agreement must be regarded 
as excellent. It should further be noticed that the finite-element grid used was too 
coarse for the spatial resolution of the fifth and higher modes; in contrast, the fifth mode 
was reproduced without any difficulties with the channel model. 

Further tests regarding the accuracy of the model were undertaken, among these, 
differences in results were analysed when varying the number of terms considered in 
the Cauchy-series expansion. Calculations show broadly that, for each mode, increasing 
the number of shape functions incorporated in the model will decrease the difference 
in subsequent eigenfrequencies, presumably to an asymptotic value. The eigen- 
frequencies obtained with one to four shape functions, the difference between them, 
and extrapolated values for each mode are listed in table 2. It is evident that the one- 
term model allows determination of the eigenfrequencies with sufficient accuracy for 
surface seiches. Structurally, the one-term model, corresponding to the Chrystal model, 
shows purely longitudinal standing waves with four nodal lines. The two-term model 
exhibits the onset of transverse oscillation in the vicinity and within the Bay of Lugano. 
This behaviour becomes more pronounced with increasing number of shape functions. 
Nonetheless the results suggest that from the structure of the eigenmodes of such an 
elongated lake it appears to be sufficient to work with a two-term model to describe 
surface seiches properly. 

4. Further discussions and concluding remarks 
The results obtained in I and I1 and in the above prove the suitability of the model 

equations as far as free gravitational oscillations are concerned. An analysis of forced 
oscillations described below turned out to  indicate clearly firstly the sensitivity of the 
results with respect to the shape function choice, and secondly the limitation of the 
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applicability of the model to gravitational modes. Generally, shape functions may be 
selected from physically meaningful assumptions of the particular phenomenon one 
would like to simulate or from considerations regarding a minimization of the compu- 
tational effort. The latter suggests the use of orthogonal families, generated by inner 
products of the form 

in which P, and 3 are two members of the family and w is a weighting function. 
Orthogonal polynomial families are computationally particularly advantageous, since 
they can be constructed with three-term recursive formulas. 

The idea is to select shape functions #i that diagonalize a particular submatrix in 
(3.1) and are thus orthogonal with respect to that inner product. Raggio (1982) shows 
that the most convenient choice is to  make the matAx 

diagonal or equal to the unit matrix (see (3.4)). Within the class of polynomial families 
the #, must be numerically evaluated. With q5j = Xt,oay(s)nY this amounts to the 
evaluation of the coefficients a, along the channel axis. 

To illustrate the dependency of the computational results on the choice of shape 
function, consider the frequency response to a harmonic West-East wind with ampli- 
tude of 10m/s. The wind stress w, is then represented by 

wi = Pair Cwind Ilwind, 

with PairCwind = 1.2kg/m*s and = 10 m/s. With these, a frequency-domain 
comparison was made using three terms in the Cauchy series, orthogonal and ortho- 
normal polynomials. The frequency range from 3 x Hz to 3 x 10-lHz was sampled 
with a logarithmic increment of 13-5 Hz to show roughly how the lake reacts at the 
different frequencies. Figures 5 (a, b, c )  show the surface-elevation response at the 
stations of Campione, Lugano end Porlezza for the three types of shape function. The 
frequencies of the first four gravity modes are marked with arrows to show the near- 
resonance behaviour around these frequencies. The exact behaviour very close to 
single eigenfrequencies is not shown properly because of the coarse logarithmic 
frequency increment. It is interesting that the different types of shape function shift 
the individual eigenfrequencies slightly. That is why, for example, the orthonormal 
polynomials show strong response at the second eigenfrequency, while the Cauchy 
series and the orthogonal polynomials do not, since the exact second eigenfrequency 
has been slightly missed by the sampling in the last two cases. The only fundamental 
difference in response for the three different shape functions is found around the 
frequency of 1 x lO-3Hz where the amplitude of the surface oscillations near Porlezza 
falls rapidly for Cauchy-series and orthogonal-polynomial shape functions but not for 
orthonormal polynomials. This warrants further study. 

It should also be pointed out that the channel model has been found suitable in the 
range of gravitational modes where the currents are essentially irrotational and driven 
by pressure gradients caused by differences in the surface elevation of the lake. Below 
the inertial frequency the motion is basically non-divergent, rotational and not 
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Frequency I H 7  1 
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FIGURE 5(a, b ) .  For caption see facing page. 
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D- '  

FIGURE 5. Response of tho surface elevation amplitude in metres at  the stations of Campione, 
Lugano and Porlezza, using aa shape functions three terms of (a) a Cauchy series, (a) orthogonal 
polynomials, and (c) orthonormal polynomials. 

FIGURE 6. Response of tho surface-elevation amplitude in metres at the stations of Campione, 
Lugano and Porlezza for a frequency range near the inertial frequency. Three terms of ortho- 
gonal polynomials are used aa shape functions. (All three symbols for the positions Campione, 
Lugano and Porlezza are so close that on the scale of this plot a single curve is seen.) 
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primarily dependent on the surface-elevation distribution but rather on depth vari- 
ation. This is the domain of topographic wavesfor which we have encountered difficulties 
which are not yet resolved. The difficulties with the present approach are perhaps best 
seen when the frequency response to the harmonic East-West wind is pursued to 
subinertial frequencies. Figure 6 displays the absolute value of the surface elevation 
at the Campione, Lugano and Porlezza stations for frequencies near the inertial 
frequency. It is clear from this figure that with our approach the mentioned subinertial 
frequencies cannot be properly predicted. The reason is that the channel equations 
contain surface-wave information which must be filtered out to enable the numerical 
procedure to identify the essential character of the motion in that range. This suggests 
the use of a rigid lid. On the other hand it was seen in I1 when discussing wave 
reflection in rectangular canals that the differential equations of the channel model 
must become stifl at very small frequencies. This would suggest the use of numerical 
integrators for stiff equations. The entire problem is not clear at the moment and 
warrants further study. 

While performing this work G.Raggio was financially supported by the Swiss 
National Science Foundation through the national programme ' Basic Problems of the 
Swiss Water Budget', Contract no. 4.006.0.76.02. We are grateful to Dr P. Hamblin for 
his permission to use his program and to report results obtained with it. 
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